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INTRODUCTION

Heterogeneity is ubiquitous in ecology. Locations within 
a landscape can vary dramatically. Individuals within a 
population may differ. Ecological modellers have long 
grappled with how to account for the heterogeneous na-
ture of ecological systems and the uncertainty that this 
induces in model parameters (Regan et al., 2002; Wu & 
Li, 2006).

Uncertainty about parameters also arises from our in-
ability to accurately measure the natural world, known as 
epistemic uncertainty. Parameters that are directly mea-
surable may be uncertain due to small sample sizes or 
measurement errors. Parameters that must be estimated 
indirectly, such as through model fitting using Markov 
Chain Monte Carlo methods, are also uncertain, with 
this uncertainty reflected in the posterior distribution of 
the estimated parameter(s).

One way of incorporating parametric uncertainty— 
whether caused by heterogeneity, epistemic uncertainty 

or both—  into models is to treat parameters as random 
variables rather than fixed quantities. Treating a param-
eter as a random variable, described by a probability dis-
tribution, causes the state variable to also be a random 
variable, with its own probability distribution. For exam-
ple, if the growth rate in a population model is treated as 
a random variable R (random variables are typically de-
noted with capital letters) rather than a fixed parameter r, 
then the population size will also be a random variable X .

Interpretation of the state variable distribution de-
pends on the biological motivation for including ran-
dom parameters. If heterogeneity is the motivation, then 
the distribution of the state variable describes its pre-
dicted heterogeneity across the landscape or population. 
Statistics from this distribution (e.g., mean, variance, 
skewness) are biologically meaningful. For example, 
the mean of the state variable distribution describes the 
landscape (or population) level prediction, averaged over 
all locations (or individuals). These statistics can also be 
compared directly to observations.
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Abstract

There is often considerable uncertainty in parameters in ecological models. This 

uncertainty can be incorporated into models by treating parameters as random 

variables with distributions, rather than fixed quantities. Recent advances in 

uncertainty quantification methods, such as polynomial chaos approaches, allow 

for the analysis of models with random parameters. We introduce these methods 

with a motivating case study of sea ice algal blooms in heterogeneous environments. 

We compare Monte Carlo methods with polynomial chaos techniques to help 

understand the dynamics of an algal bloom model with random parameters. 

Modelling key parameters in the algal bloom model as random variables changes 

the timing, intensity and overall productivity of the modelled bloom. The 

computational efficiency of polynomial chaos methods provides a promising 

avenue for the broader inclusion of parametric uncertainty in ecological models, 

leading to improved model predictions and synthesis between models and data.
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If epistemic uncertainty motivates including random 
parameters, the resulting distribution of the state vari-
able describes the likelihood that a given outcome is re-
alized. In this case, statistics of the distribution cannot 
be directly compared against observations, because only 
a single outcome will be realized. Rather, the statistics of 
the output distribution help us understand how uncer-
tainty in model inputs translates to uncertainty in model 
outputs.

Model dynamics often differ substantially between a 
model with fixed versus random parameters. Classic sen-
sitivity analyses, where parameters are shifted slightly but 
still treated as fixed quantities, cannot provide insight 
into expected model behaviour or other moments. Failure 
to fully consider parametric uncertainty may result in 
biased estimates of the timing and magnitude of ecolog-
ical phenomena and insufficient consideration of result-
ing uncertainty in model outputs, with ramifications for 
conservation (Harper et al., 2011; McCarthy et al., 2011) 
and fundamental ecological understanding (Cenci & 
Saavedra, 2018; O'neill et al., 1980; Paine et al., 2012).

In this paper, we explore the impact of including para-
metric uncertainty on model dynamics and introduce 
recent advances in uncertainty quantification. We focus 
on a simplified model of sea ice algae, motivated by the 
heterogeneity of observed ice algal densities over small 
spatial scales arising from spatially variable environ-
mental conditions (Cimoli et al., 2017; Eicken et al., 1991). 
This heterogeneity at small scales creates challenges for 
modelling bloom dynamics over ecologically meaning-
ful scales and connecting ice algal models to field data 
(Vancoppenolle et al., 2013). The methods demonstrated 
in this case study can be applied to any mathematical 
model with parametric uncertainty.

Case study: Sea ice algae in a heterogeneous 
environment

Sea ice is a porous material, due to salt expulsion and 
entrapment during freezing (Petrich & Eicken, 2017). Sea 
ice algae— specifically, diatoms— are endemic to this ex-
treme environment, living within brine inclusions inside 
the ice (Arrigo,  2017). These algal populations exist in 
low densities through the dark winter months and then 
experience a period of rapid growth in the spring once 
light is no longer limiting (Leu et al., 2015). Termination 
of this spring bloom is often linked to nutrient limita-
tion, as high algal concentrations during the bloom 
deplete the available nutrients faster than they are re-
plenished (Gosselin et al.,  1990; Leu et al.,  2015). Ice 
algae provide lipid- rich food for the lowest polar marine 
trophic levels early in the spring (Leu et al., 2011; Søreide 
et al.,  2010), support overwintering Antarctic krill 
(Kohlbach et al., 2017), and impact polar biogeochemi-
cal fluxes, such as carbon cycling (Boetius et al.,  2013; 
Vancoppenolle et al., 2013).

Heterogeneity of the sea ice ecosystem over meter 
scales complicates both empirical and modelling studies 
of sea ice ecology (Cimoli et al., 2017; Mundy et al., 2005; 
Swadling et al.,  1997). Important physical characteris-
tics such as snow depth (Massom et al., 2001; Perovich 
et al., 1998), ice thickness (Stroeve et al., 2021; Thorndike 
et al., 1975), and salinity (Tucker III et al., 1984), vary over 
these small spatial scales, resulting in patchy ice algal 
distributions (Gosselin et al., 1986; Meiners et al., 2017; 
Rysgaard et al., 2001). Because of this heterogeneity and 
the nonlinearity of bloom dynamics, regional mean val-
ues of snow depth or ice thickness cannot be expected 
to accurately predict regional algal dynamics (Abraham 
et al., 2015; Stroeve et al., 2021).

To understand how spatial heterogeneity impacts algal 
bloom dynamics, we focus on the ecosystem component 
of the larger biogeochemical system, ignoring seasonal-
ity and other physical forcings. Many of the same fluxes 
determining pelagic primary production also determine 
primary production within sea ice (Vancoppenolle & 
Tedesco, 2017); thus, in the simplest case, ice algae are 
modelled using so- called N- P models (Deal et al., 2011; 
Dupont,  2012; Lavoie et al.,  2005). These models de-
scribe the changes in the concentration of some limiting 
nutrient N (often assumed to be silicate in sea ice models 
[Lavoie et al., 2005; Vancoppenolle et al., 2010; Tedesco 
& Vichi, 2014]) and primary producers P (here, sea ice 
algae).

We build on the differential equation model of 
Huppert et al. (2002),

with initial conditions N(0) = n0, P(0) = p0 and units of 
kg m−3 and mg m−3 for algal and nutrient concentrations, 
respectively. This model assumes a constant rate of nutri-
ent input, �, while nutrients and algae are lost proportion-
ally (�, �) to their concentrations. Nutrient uptake by algae 
obeys mass action with the uptake rate (�) proportional 
to both nutrient and algal concentrations. Algal growth is 
proportional to nutrient uptake, with conversion parame-
ter �. This model is able to produce features typical of algal 
bloom dynamics: a period of rapid increase in algae that 
leads to a depletion of nutrients and subsequent termina-
tion of the algal bloom (Figure 1a).

We are interested in algal dynamics at the start of 
the spring, when light becomes sufficient for photo-
synthesis. Due to highly variable and unpredictable 
physical processes occurring throughout the winter, 
we treat the initial conditions, n0 and p0, as parame-
ters that are independent of the other parameters in 
the model.

(1)

dN

dt
= �
⏟⏟⏟
input

− �NP
⏟⏟⏟
uptake

− �N
⏟⏟⏟

loss

dP

dt
= ��NP
⏟⏟⏟
growth

− �P
⏟⏟⏟
death

,
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To implicitly incorporate spatial environmental het-
erogeneity into this model, we first consider the algal 
growth parameter � at each location in a chosen region 
as a random variable B with a known distribution. Later, 
we also consider the initial conditions (n0, p0) as random 
variables (N0,P0). We assume �[B] = �, and compare 
the model with a random growth parameter to the same 
model with the growth parameter fixed at its mean value.

Algal dynamics at any randomly selected location 
within the chosen region are described by a modified 
version of (1),

where N(0) = n0 and P(0) = p0. Here, N(t) and P(t) are ran-
dom variables, and consideration of �[N] and �[P]— the 
expected values with respect to the random growth rate 
B— provides an improved representation of nutrient and 
algal concentrations over regional scales by averaging the 
algal dynamics at each individual location (Figure  1b). 
Consideration of higher moments of N and P provides in-
sight into the variance and skewness we may expect in field 
data.

Overview

We first present analytic approaches to understanding the 
biases introduced by treating parameters as fixed rather 
than random variables, illustrated through the ice algal 
case study (Section 2). However, analytic techniques are 
unable to provide insight into other aspects of the model 
with random parameters, such as the mean and higher 
moments of the algal concentration (e.g., variance, skew-
ness) throughout the bloom. This more sophisticated 
understanding is necessary if we are to successfully con-
nect models to field data. While statistics such as the 
mean or variance can be computed using Monte Carlo 

sampling, this requires the generation of a large ensem-
ble of model solutions. Generating this ensemble may be 
undesirable for models that are computationally costly, 
such as biogeochemical models that model sea ice algae 
within the context of ocean- ice- atmospheric couplings 
(Tedesco & Vichi, 2014). In Section 3, we introduce pol-
ynomial chaos (PC) techniques for parametric uncer-
tainty quantification, which can compute these statistics 
to any given level of accuracy with a small fraction of the 
computational effort required by Monte Carlo methods 
(Smith, 2013). So- called intrusive PC methods have been 
used in a few ecological studies to date (Albi et al., 2021; 
Harman & Johnston,  2016; Hickson & Roberts,  2014; 
Stanescu & Chen- Charpentier, 2009), mainly focused on 
infectious disease ecology. The nonintrusive methods we 
introduce here have only recently been introduced into 
the mathematical disease ecology literature (Bertaglia & 
Pareschi, 2021; Zanella et al., 2021), and have the poten-
tial to offer the broader community both computational 
gains and improved ease of implementation.

Using these uncertainty quantification methods in 
our case study, we treat both model parameters and ini-
tial conditions as random variables, exploring the rela-
tive contribution of these multiple sources of uncertainty 
to variability in model outputs through global sensitiv-
ity analyses (Section 4). We find that treating the algal 
growth rate and initial conditions as random variables 
lowers the regional peak bloom intensity, reduces the 
total algae present, and suggests earlier bloom initiation. 
Modelled algal concentrations are positively skewed ex-
cept at the peak of the bloom; this novel statistical pat-
tern can be compared to field data. Global sensitivity 
analysis suggests that heterogeneous initial algal con-
centrations may contribute less than heterogeneous algal 
growth rates and initial nutrient levels to variability in 
algae throughout the bloom.

The results from the case study demonstrate that ne-
glecting spatial heterogeneity or other sources of para-
metric uncertainty when estimating regional dynamics 
may result in biased estimates of important ecological 

(2)
dN

dt
=�−BNP−�N

dP

dt
= �BNP−�P,

F I G U R E  1  (a) Typical algal bloom dynamics, generated by model (1) with a fixed growth parameter. (b) 100 Monte Carlo simulations (thin 
lines) and mean behaviour (bold lines) of the same algal bloom model as in (a), but with a random variable describing growth (model (2)). The 
maximum bloom height (Pmax and maxt(�[P])) and asymptotic nutrient levels (N∗ and �[N∗]) are shown. In (b), the mean of the peak of each 
Monte Carlo simulation, �

[

Pmax
]

, is also shown for comparison with maxt(�[P]), the peak of the mean curve. Both are ecologically meaningful, 
but only the former is analytically computable. In (a), the growth rate is � = 1, and in (b), the growth rate is a random variable B with a uniform 
distribution U (0.6,1.4) with a mean of �[B] = 1. Other parameters, � = 0, � = 0.8, � = 0.1, � = 0, n0 = 0.22, p0 = 0.001, consistent with the closed 
model described in the text.
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phenomena and make it difficult to connect models to 
data. We hope that these approaches— both analytic 
and computational— will empower ecological modellers 
faced with parametric uncertainty.

A NA LYTIC RESU LTS ON MODEL 
BI ASES IN BLOOM H EIGHT A N D 
TOTA L A LGAE

Many ecological models with fixed parameters can 
be understood, at least to some extent, analytically. 
These analytic results can provide insights into the 
effects of neglecting uncertain parameters, using the 
approaches demonstrated in this section. We begin 
by building on known results for our case study 
model with fixed parameters (model (1)). Huppert 
et al.  (2002) described and analysed two versions of 
this model: a “closed” model, where nutrients nei-
ther leave nor enter the system (i.e. � = � = 0), and an 
“open” model, where 𝛼 > 0 and/or 𝜂 > 0. Important 
properties of the bloom can be calculated for the (sim-
pler) closed model, including the maximum bloom 
height Pmax, the level of nutrients remaining after the 
bloom N∗, and the total amount of algae present dur-
ing the bloom Ptotal (Figure 1a).

The relationship between these bloom features and 
the growth rate � determines whether considering the 
algal growth rate as a random versus fixed parameter 
will result in their over-  or under- estimation. This hinges 
on the relationship described by Jensen's inequality 
(Jensen, 1906), which tells us whether a nonlinear model 
that includes a random parameter will overestimate (or 
underestimate) a model that only includes that param-
eter's mean value. Jensen's inequality is of relevance for 
understanding how variable parameters affect predic-
tions in any nonlinear relationship in ecology (Ruel & 
Ayres, 1999). For example, consider the maximum algal 
density achieved during the bloom, Pmax, which depends 
on the algal growth rate, � (the exact relationship is pro-
vided below in [5]). Since Pmax is a function of �, we can 
take its derivative(s) with respect to �. Pmax is concave 
up in � if its second derivative exists and is positive; it 
is concave down if this second derivative is negative. 
Then by Jensen's inequality, if Pmax is concave up in � , 
the model with the fixed parameter � will underestimate 
the mean of the model with the random parameter B, so 
Pmax(�[B]) ≤ �

[

Pmax(B)
]

 (and vice versa if Pmax is con-
cave down).

The dynamics of the closed model approach a glob-
ally asymptotically stable solution, (N∗,P∗) = (N∗, 0) , 
where N∗ depends on the initial conditions (Huppert 
et al., 2002). So regardless of the parameter values, the 
algae eventually die out (Figure 1). Whether a bloom oc-
curs prior to this die out depends on the model param-
eters (Huppert et al., 2002; Murray, 1993). At time t = 0, 
algal dynamics follow

If n0 < 𝜌, where

then algae are lost (�) faster than they are growing (��n0 ), 
so (3) is negative and the algal population decays mono-
tonically, precluding the possibility of a bloom. Because 
we are interested in bloom dynamics, we assume n0 > 𝜌 
unless stated otherwise.

Analysis of bloom height, asymptotic 
nutrients and total algae

We now demonstrate what Jensen's inequality tells us 
about three analytic properties of the closed algal bloom 
model: peak bloom height, asymptotic nutrient levels 
and total algae present during the bloom.

Peak bloom height, Pmax

For the closed model, the peak bloom height can be 
found analytically (details in S1) to be

Pmax takes a single value if we assume a fixed parame-
ter �, and becomes a random variable if we substitute the 
random variable B into (5). Pmax is a twice differentiable 
function of �, and we find that d

2Pmax

d𝛽2
> 0 if the model pa-

rameters satisfy n0∕𝜌 <
√

e, where e is Euler's number. 
So by Jensen's inequality,

Because we have assumed n0 > 𝜌, for any parame-
terization satisfying the relatively narrow bounds of 
1 < n0∕𝜌 <

√

e ≈ 1.65, the model with the fixed param-
eter � underestimates the expected peak bloom height 
(Figure 2a). Conversely, if n0∕𝜌 >

√

e then d
2Pmax

d𝛽2
< 0 and 

so

in which case the model with the fixed parame-
ter � overestimates the expected peak bloom height 
(Figure 2b). Note that these results are about �

[

Pmax
]

,  
which is subtly different from the peak of the mean 
curve, maxt(�[P]) (Figure 1b) though the general pat-
tern holds (details in S2).

(3)
dP

dt

|

|

|

|t=0

=
(

��n0 − �
)

p0.

(4)� = �∕(��),

(5)Pmax(�) = −
�

�
+

�

�
ln

(

�

n0

)

+ p0 + �n0.

(6)�
�

Pmax(B)
�

> Pmax(𝛽), if
n0

𝜌
<
√

e.

(7)�
�

Pmax(B)
�

< Pmax(𝛽), if
n0

𝜌
>
√

e,
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For a given distribution of the random variable B, we 
can also calculate �

[

Pmax
]

 and use this to confirm that 
the difference between the peak heights of the models 
with fixed versus random growth rates increases with the 
variance in B (Figure 2a,b; details in S2). Additionally, 
we can explore how a given distribution of B is distorted 
by the nonlinear model by deriving the full distribution 
of Pmax(B) (details in S4).

Nutrients remaining after the bloom, N∗

The asymptotic nutrient concentration in the closed 
model, N∗(�), is the solution to the transcendental equa-
tion (derivation in S1),

Using similar approaches as for Pmax (details in S5), we 
find conditions under which the model with a fixed pa-
rameter � over-  or under- estimates the model with random 
parameter B. For example, if N∗(𝛽) < 𝜌∕2, then the model 
with a fixed growth rate underestimates the model with the 
random growth parameter (Figure 2c).

Total algae in the bloom, Ptotal

All nutrients that are removed from the closed system 
must have been removed through uptake by algae. It 
follows that the total amount of algae in the bloom is 
Ptotal = p0 + �

(

n0 −N∗
)

, the initial algae concentration 
plus the change in nutrients times the conversion factor. 
Because

our understanding of N∗ implies that if N∗ is sufficiently 
small (< 𝜌∕2), then (9) is negative, so the model with a 
fixed growth rate � will predict greater cumulative algal 
biomass compared to the model with a random growth 
parameter B.

This difference in predicted total algae increases with 
increased variance in the distribution B (Figure 3).

U NCERTA INTY QUA NTI FICATION 
M ETHODS FOR 
PARA M ETRIC U NCERTAINTY

The results from the previous sections demonstrate that 
taking the mean value of a parameter rather than consider-
ing its full distribution biases nonlinear model outputs, and 
this bias typically increases with the variance in the distri-
bution of that parameter. In the closed algal bloom model, 
simplifying spatially heterogeneous growth rates to their 
mean value results in an overestimation of both the maxi-
mum bloom concentrations Pmax and the total algae present 
during the bloom Ptotal for a wide range of parameters.

These general patterns hold even if we no longer re-
strict ourselves to the closed model and rather consider 
the open model, where nutrients can enter and leave the 
system (details in S6). As in the closed model, the ratio 
of parameters n0∕� determines whether the models with 
a fixed growth parameter over-  or under- estimates the 
bloom height. However, we cannot obtain analytic ex-
pressions for the peak bloom height or total algae during 
the bloom for the open model.

For many ecological models, analytic results using 
the methods outlined in the previous section may not be 
possible. Additionally, we may wish to treat several of 
the model parameters as random variables, complicating 
analytic approaches. For our case study, the algal and 
nutrient concentrations at any given spatial location at 
the start of the bloom are the product of complex and 
stochastic physical and biological drivers, so we may also 

(8)N∗(�) = �ln

(

N∗(�)

n0

)

+
p0

�
+ n0.

(9)d2Ptotal

d�2
= − �

d2N∗

d�2
,

F I G U R E  2  Comparison of blooms with different peak heights Pmax and asymptotic nutrient levels N∗. Green and yellow curves are 
from model (1) with a fixed growth parameter �. Purple and blue curves show �[P] and �[N] from 10,000 Monte Carlo simulations of (2), 
the model with random growth parameter B. Depending on model parameters, the model with a fixed growth rate underestimates (a) or 
overestimates (b) the maximum bloom height. (c) The model with a fixed growth rate underestimates the nutrients remaining after the bloom, 
and thus overestimates the amount of algae present during the bloom. Here B is uniformly distributed with mean � and width 2�. Curves 
of increasing colour intensity for both �[P] and �[N] correspond to increasing values of �, ranging through 0.1,0.2, … ,0.4. (a) Parameters: 
� = 0, � = 1, � = 0.8, � = 0.1, � = 0, n0 = 0.16, p0 = 0.001. (b, c) Parameters as in (a) except n0 = 0.22. Parameters in (a) and (b) were chosen to 
satisfy the conditions of (6) and (7), respectively.
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want to consider the initial conditions 
(

n0, p0
)

 as random 
variables 

(

N0,P0

)

.
We now introduce numerical uncertainty quanti-

fication methods. Using these methods, we quantify 
uncertainty (i.e., variability) in the trajectories of N 
and P resulting from uncertainty in the random pa-
rameters, here denoted y =

(

B,N0,P0

)

. We introduce 
and investigate three approaches: Monte Carlo, and 
intrusive and nonintrusive PC methods, using our case 
study model.

Monte Carlo

The Monte Carlo procedure is the conceptually sim-
plest approach, where statistics of (N ,P) are approxi-
mated with empirical ensemble estimates. This method 
requires drawing a large number (M) of independent 
and identically distributed random samples of the pa-
rameters yi and then solving the deterministic model 
(1) with these parameters to obtain an ensemble of tra-
jectories N

(

t, yi
)

 and P
(

t, yi
)

 for i = 1, … ,M ,. This en-
semble of trajectories provides an estimate of the full 
distribution of the random variables N(t, y) and P(t, y),  
as well as any statistical properties such as the mean 
and variance.

However, error estimates for the mean �[P(t)] scale 
like 1∕

√

M , which reveals the relative inefficiency of 
this approach: a large M is needed to guarantee accuracy 
of the estimator to several digits. For computationally 
expensive models, solving the model thousands of times 
may not be feasible.

Polynomial chaos

PC approaches provide an alternative to Monte Carlo 
for approximating N  and P (Wiener,  1938; Xiu,  2010; 
Xiu & Karniadakis, 2002). The overall idea is separa-
tion of variables, separating the time- dependence of the 
solutions from their dependence on the random param-
eters y. The approximations to (N(t, y),P(t, y)), known 

as PC expansions, are denoted 
(

NV (t, y),PV (t, y)
)

 and 
defined as

The dependence of N and P on the random parameter(s) 
y is approximated by a set of polynomials, 

{

�j
}n

j=1. The 
choice of polynomials dictates the ability of the PC expan-
sion to closely approximate the true solutions (N ,P). The 
subscript V  here denotes the polynomial subspace spanned 
by the polynomials 

{

�j
}n

j=1
, and serves as a reminder that 

the quality of the approximation depends on the choice 
of polynomials. For example, if y is a single (scalar) pa-
rameter, then it is standard to choose the n functions �j 
so that they span polynomials up to degree n − 1, and if 
y is a vector- valued parameter, then choosing �j to span 
polynomials up to a given degree is a common choice, but 
in this vector- valued setting there are numerous alternative 
choices. In this manuscript we follow two conventional as-
sumptions: that 

{

�j
}n

j=1
 are orthonormal polynomials (i.e., 

�
[

�j(y)�k(y)
]

= �j,k with �j,k the Kronecker delta func-
tion), and that �1(y) ≡ 1.

The time- dependence of N and P is captured by the 
Fourier Series- like coefficients 

(

Ñ j(t), P̃j(t)
)

, which need 
to be computed. We provide an overview of both intrusive 
and nonintrusive methods for computing 

(

Ñ j(t), P̃j(t)
)

 in 
Sections 3.2.1 and 3.2.2.

The convergence of PC approximations to (N ,P) as 
n→ ∞ is well understood, provided N and P depend 
smoothly on y (Ernst et al.,  2012). Once we have con-
structed the coefficients Ñ j , P̃j, then the PC approxima-
tions to the full solutions (10) can be used to estimate 
relevant statistics of (N(t, y),P(t, y)). For example, the 
mean and variance of algae concentrations are conve-
niently given by

(10)
NV (t, y)=

n
∑

j=1

Ñ j(t)�j(y),

PV (t, y)=

n
∑

j=1

P̃j(t)�j(y).

(11)�[P(t)] ≈ P̃1(t), var[P(t)] ≈

n
∑

j=2

P̃
2

j
(t).

F I G U R E  3  (a) Comparison of (expected) total algae present throughout the algal bloom for the model with a fixed algal growth rate, �,  
and with a random growth rate, B. The difference in total algae between the two models increases as the variance in B increases. Here B is 
uniformly distributed with mean � and width 2�; variance values shown correspond to � = 0.1 to 0.4. Parameters in (a) and (b) correspond to 
those in Figure 2a,b, respectively.
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This also yields estimation of more sophisticated statistical 
quantities; for example, the coefficient of variation (CV), 
defined as the ratio of the standard deviation to the mean, 
or higher moments such as skewness.

For the ice algae model with three random parame-
ters, we are also interested in how much of the predicted 
variance in the algae concentration is the result of vari-
ance in algal growth rate versus variance in the initial 
conditions. PC approaches make it easy to compute 
partial variances and closely- related global sensitivities. 
Global sensitivity analysis allows us to ask whether un-
certainty in some parameters or initial conditions gets 
amplified more over time than others.

If PV (or, similarly, NV) has finite variance, then it ad-
mits the ANOVA decomposition (Sobol, 2001),

where ℙ(y) denotes the power set, the set of all subsets of 
y (including the empty set). For the ice algae model with 
y =

(

B,N0,P0

)

, the power set is

Each PV ,I can be defined recursively as,

where yI denotes the set of variables y restricted to the 
subset I . Under this decomposition, one can express the 
absolute and relative partial variance attributable to a 
given non- empty set as varI

[

PV
]

 and SI, respectively, de-
fined as,

SI is called the global sensitivity associated with sub-
set I , and has the partition of unity property ΣSI = 1, if 
summed over all subsets I . These global sensitivities can 
be used to assess which parameter sets I  contribute most 
(or least) to variability in the predicted algal concentra-
tions. These partial variances depend on time, and so the 
contribution of any subset I  of parameters to the vari-
ance in P (or N) does also. The partial variances, and in 
turn the global sensitivities SI, are easily computed from 
the PC coefficients P̃j (e.g., sometimes explicitly, or by 
numerical integration).

PC approaches provide a powerful strategy for 
propagating randomness in parameters and initial 
conditions through a differential equation model. The 

next critical step is to compute the coefficients 
(

Ñ j , P̃j

)

 
in (10).

Intrusive methods

We introduce an intrusive method (known as the 
Stochastic Galerkin method) for computing the coeffi-
cients 

(

Ñ j , P̃j

)

 (Xiu, 2010). This approach is intrusive in 
the sense that we must manipulate the original model.

The main idea of this approach is to replace (N ,P) 
in the nutrient- algae model (2) with the approximations 
(

NV ,PV
)

, as defined in (10). This results in

where y =
(

B,N0,P0

)

 are random variables. For each 
j = 1, … , n, we then multiply both sides of the equa-
tions (13) by �j and take the expected value with respect 
to the random parameters y, resulting in a differential 
equation for dÑj ∕dt and dP̃j ∕dt. More technically 
speaking, since 

{

�j
}

 are orthonormal polynomials, we 
are projecting (13) onto V = span

{

�j
}n

j=1
, the polynomial 

subspace spanned by the polynomials. In doing so for 
each j value, we replace the random differential equa-
tions in (13) by a deterministic size- 2n system of cou-
pled differential equations in each of the coefficients 
dÑj ∕dt and dP̃j ∕dt for j = 1, … , n (further details in 
S7). Numerically solving this system yields the desired 
coefficients Ñ j and P̃j for each j = 1, … , n. Using this 
method amounts to replacing the random differential 
equations of our original model (2) with deterministic 
ones, at the cost of increased dimension of the system, 
from 2 to 2n coupled differential equations. When both 
the number of random parameters and the dimension n 
of the polynomial space is small, this intrusive approxi-
mation is typically far less computationally demanding 
than Monte Carlo.

Nonintrusive methods

Unlike intrusive methods, nonintrusive methods do not 
manipulate the original model, but instead sample the 
nutrient- algae model (2) for specific fixed values of the 
random parameters y. This makes nonintrusive methods 
intuitively similar to Monte Carlo and so more transpar-
ent to implement than intrusive methods.

A nonintrusive method for building PC approxima-
tions is the Stochastic Collocation approach. We discuss 
the quadrature approach for computing (approxima-
tions to) the coefficients 

(

Ñ j , P̃j

)

, but note that numer-
ous alternative approaches exist (Narayan & Zhou, 2015; 
Smith, 2013; Xiu, 2010).

PV (t; y) =
∑

I ∈ℙ(y)

PV ,I

(

t; yI
)

,

ℙ(y)=
{

�, {B},
{

N0

}

,
{

P0

}

,
{

B,N0

}

,
{

B,P0

}

,
{

N0,P0

}

,
{

B,N0,P0

}}

.

PV ,�(t)=�
[

PV (t)
]

,PV ,I

(

t; yI
)

=�
[

PV (t) |yI
]

−
∑

J ⊂ I

J ≠ I

PV ,J

(

t; yJ
)

,

(12)

varI
[

PV (t)
]

= var
[

PV ,I

(

t; yI
)]

, SI (t) =
varI

[

PV (t)
]

var
[

PV (t)
] .

(13)

dNV

dt
=�−BNVPV −�NV , NV (0)=N0

dPV

dt
= �BNVPV −�PV , PV (0)=P0
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We assume the existence of a y- quadrature rule 
(

ym,wm
)M

m=1
 comprised of deterministic nodes ym (these 

are specific values of the random parameters y dictated 
by quadrature theory) and corresponding weights wm 
such that

for any function f (y) with finite variance. Using this 
quadrature rule, we can compute

Since �
[

�j(y)P(t; y)
]

 would be a mean- square optimal 
choice for P̃j(t), then we compute

and similarly for Ñ j. The approximation above is the non-
intrusive PC method using quadrature rules. This proce-
dure requires only the availability of a size- M ensemble of 
trajectories:

which are easily constructed if any numerical solver for 
the original model with fixed parameters (here model (1)) 
is provided. Thus the major computational bottleneck in-
volved in this approach is construction of the above ensem-
ble, requiring M simulations of the original size- 2 system 
of differential equations.

To compare costs of the nonintrusive and intrusive 
methods, we describe how M can be chosen: in the case 
where y is scalar, then accurate choices with M = n exist, 
where n is the dimension of the polynomial space. If 

y =
(

B,N0,P0

)

, and the components of y are assumed to 
be independent, then the expansion with common choices 
of a total degree polynomial space and tensorized quadra-
ture rule requires M ≈ 6n samples. Thus we can directly 
compare the computational cost of the intrusive versus the 
nonintrusive methods in terms of the parameter n for the 
algal bloom model: the intrusive method requires a single 
solve of a size- 2n system of coupled ordinary differential 
equations, and the nonintrusive method requires 6n solves 
of a size- 2 system of ordinary differential equations. Since 
the complexity of solving coupled differential equations 
is superlinear in the size of the system, the nonintrusive 
method is much more computationally efficient here.

U NCERTAINTY 
QUA NTI FICATION RESU LTS

All three methods described above— Monte Carlo, in-
trusive and nonintrusive PC methods— result in bloom 
dynamics that are indistinguishable from each other 
(Figure 4).

To understand the ecological implications of incorpo-
rating spatial heterogeneity into the algal bloom model, 
we present results for the nutrient- algae model with the 
growth rate B and initial conditions 

(

N0,P0

)

 treated as ran-
dom variables. Using the nonintrusive method described 
above, we can examine the mean, standard deviation, 
CV and skewness of the algae distribution P(t) , as well as 
global sensitivities throughout the bloom (Figure 5). The 
mean provides an estimate of regional bloom dynamics, 
accounting for spatial heterogeneity in growth rates and 
initial conditions, which can then be compared to the dy-
namics of the model with fixed parameters. The standard 
deviation, CV and skewness provide statistical quantities 
that could qualitatively and quantitatively be compared 
against field data. The global sensitivities provide insight 
into the drivers of algal variability. The same analysis 
could similarly be conducted for N(t).

For comparison with the earlier results in Figures 1– 
4, we set the mean values of P0 and N0 to 0.001 and 0.22, 

(14)�
[

f (y)
]

≈

M
∑

m=1

wmf
(

ym

)

,

(15)�
[

�j(y)P(t; y)
]

≈

M
∑

m=1

wm�j
(

ym

)

P
(

t; ym
)

.

(16)P̃j(t) =

M
∑

m=1

wm�j
(

ym

)

P
(

t; ym
)

,

N
(

t; ym
)

, P
(

t; ym
)

, m = 1, … ,M ,

F I G U R E  4  Mean and standard deviation of nutrient and algae dynamics approximated using three different uncertainty quantification 
methods for model (2) with the growth rate B as a random parameter; (a) 10,000 Monte Carlo simulations, (b) intrusive polynomial chaos 
expansion methods (n = 6) and (c) nonintrusive polynomial chaos expansion methods (M = 7 samples). Shaded regions show ± 1 standard 
deviation from the mean. Parameters: � = 0, � = 0.8, � = 0.1, � = 0, n0 = 0.22, p0 = 0.001. The growth rate B has a uniform distribution U (0.8,1.2) 
with a mean of �[B] = 1.
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respectively. We choose values from lognormal distribu-
tions in order to ensure nonnegative values and consider 
all combinations (9 total) of three coefficients of varia-
tion (CV) for both N0 and P0: 0.1, 0.3 and 0.5. We consider 
B as a uniform random variable on [0.6,1.4], which has 
CV ≈ 0.23. Technical details (e.g., the specific polyno-
mial bases and quadrature rules) are described in S8.

For all scenarios considered, the model with random pa-
rameters shows a regional (mean) algal bloom with a lower 
and earlier peak than the model with all parameters fixed 
at their mean values (Figure 5a, Figure S3). The standard 
deviation of the algae concentration increases as the bloom 
increases, both in absolute terms (Figure 5a) and relatively, 
as indicated by high CV values (Figure 5b). Skewness tends 
to be positive, with the highest values occurring during the 
first part of the bloom, and then increasing again at the 
end of the bloom. The decline in skewness near the peak of 
the bloom is especially pronounced when there is less vari-
ability in the initial conditions (i.e., low CV for P0 and N0; 
Figure S4), and corresponds to the time at which roughly 
half of the locations have already reached their peak and 
are coming down from it, while the other half are still in 
the growing phase of their local bloom.

Global sensitivity analysis (Figure 5c, Figure S5) sug-
gests that variability in the initial algae concentration P0 
only contributes to variability in subsequent algal dy-
namics early on in the bloom. As the bloom progresses, 
variability in the initial nutrients N0 and the growth rate 
B contribute most to variability in algal dynamics.

Our analysis of the closed model (Section 2) with only a 
single random parameter, B, suggested that the model with 
fixed parameters will often overestimate the total biomass 
present throughout the bloom. To see whether this gener-
alizes to the case with variable initial conditions, we con-
sider the average value of both models (with random and 
fixed parameters). The model with random parameters 
(Figure 5) had an average algae concentration 11% lower 
than the model with all parameters fixed at their mean 
values (0.0110 kg m−3 and 0.0122 kg m−3, respectively).

DISCUSSION

Parametric uncertainty in ecological models can gen-
erate dynamics that differ in important ways from their 
deterministic counterparts. The effects of treating 

F I G U R E  5  Statistics of the algal concentration P(t) obtained using nonintrustive polynomial chaos. (a) Mean and ± 1 standard deviation 
of P(t) , along with the nominal trajectory (all parameters set to their mean values), and several realisations with randomly sampled parameters. 
(b) Coefficient of variation (CV ) and skewness of P(t). (c) Global sensitivities of P(t), indicating the relative contributions of variability in 
the random parameters to variability in P(t). Most sensitivities not involving B and N0 are visually close to zero for time t ≳ 15. Parameters: 
� = 0.00075, � = 0.8, � = 0.1, � = 0.0005. B is uniformly distributed on [0.6,1.4]. N0 and P0 are lognormally distributed with respective mean 
values of 0.22 and 0.001, each with a CV of 0.3. The number of samples is M = 1331, as described in S8.
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uncertain parameters as random variables can, in some 
circumstances, be understood analytically, as demon-
strated in Section  2. When analytic approaches are 
insufficient or difficult to implement, contemporary 
uncertainty quantification methods (Section  3) accu-
rately and efficiently compute statistics and global sen-
sitivities of ecological processes subject to parametric 
uncertainty. We have shown that these powerful meth-
ods can and should play an increasingly prominent role 
in ecological modelling.

In our case study of sea ice algal bloom dynamics, we 
incorporated small scale heterogeneity into a canonical 
model of nutrient- dependent algal growth by treating 
key parameters as random variables. Treating the algal 
growth rate as a random parameter and applying Jensen's 
inequality to analytically obtainable bloom features pro-
vided insights into conditions under which spatial het-
erogeneity in growth rates may decrease the maximum 
regional bloom intensity and the total biomass present 
during the bloom (Section 2).

We then employed sophisticated uncertainty quanti-
fication methods to this system to understand the full 
dynamics and higher moments of the algal distribution, 
as well as incorporate spatial heterogeneity in initial 
conditions (Section  3). We introduced and compared 
three methods: Monte Carlo, intrusive and nonintru-
sive PC methods. For this relatively simple system, all 
three methods produced the same results. The choice of 
method depends on the trade- off between the time re-
quired to code PC approaches and the time required to 
run Monte Carlo simulations. PC approaches are recom-
mended when computational constraints render Monte 
Carlo methods impractical. Monte Carlo methods are 
recommended when each deterministic run is computa-
tionally inexpensive, or when there is a large number of 
random parameters.

Using nonintrusive PC, we demonstrated that includ-
ing spatial heterogeneity in the algal growth rate and the 
initial conditions of the full open model reduces the peak 
bloom height and shifts the timing of the bloom peak. 
It also reduces the total biomass present throughout 
the bloom, consistent with the analytic findings of the 
simpler model in Section 2. The predicted coefficient of 
variation, skewness and global sensitivities of the algal 
concentration suggest patterns which may be compared 
against field data.

We illustrated the analytic approaches using the peak 
bloom intensity and total biomass, quantities that are 
analytically tractable (Section 2). Many important quan-
tities of interest are not state variables and cannot be 
found analytically, such as the timing of the peak algal 
density. Uncertainty quantification approaches can still 
be applied in this case, with the same potential to im-
prove computational efficiency.

The (closed) model presented here matches the 
classic infectious disease model of Kermack and 
McKendrick  (1927) if � = 1. Our analytic results in 

Section 2 suggest that if there is uncertainty in the infec-
tion rate (analogous to the algal growth rate), then the ex-
pected dynamics of an epidemic may vary considerably 
from a model that ignores that uncertainty. For example, 
whether the expected infection peak is over-  or under- 
estimated when ignoring parametric uncertainty can be 
shown to depend on R0, the basic reproduction number.

Infectious disease ecology is one of the few fields of 
ecology where PC methods have been introduced, in-
cluding intrusive methods (Albi et al.,  2021; Calatayud 
et al., 2018; Chen- Charpentier & Stanescu, 2010; Harman 
& Johnston, 2016; Hickson & Roberts, 2014) and, more 
recently, nonintrusive approaches (Bertaglia et al., 2021; 
Bertaglia & Pareschi, 2021; Zanella et al., 2021). The few 
studies in other areas of ecology have all used an intrusive 
approach (Calatayud et al., 2020; Stanescu et al., 2009; 
Stanescu & Chen- Charpentier,  2009). However, nonin-
trusive methods have the potential to contribute signifi-
cantly to our understanding of ecological dynamics in 
more complex situations (e.g., with multiple random pa-
rameters or more complicated model structures) under 
parametric uncertainty, as they are easier to implement 
and often significantly more computationally efficient. 
Several uncertainty quantification software packages 
have been developed in recent years, including pack-
ages for R (e.g., uncertainty), Matlab (Marelli & 
Sudret,  2014; Petzke et al.,  2020), and Python (Olivier 
et al., 2020; The SCI Institute, University of Utah, 2020); 
see Ghanem et al. (2017) for a more comprehensive list. 
As these uncertainty quantification methods continue 
to gain popularity, further development of software 
packages— especially those facilitating nonintrusive 
PC methods— should empower ecological modellers to 
regularly include spatial heterogeneity or other forms of 
parametric uncertainty.

Considering parameters as random variables has im-
plications not only for improving our understanding of 
how parametric uncertainty affects model dynamics but 
also for comparing ecological models to data. For ex-
ample, given the assumptions resulting in Figure 5, we 
would expect to see a large variance in algal measure-
ments taken at individual locations during the bloom, 
with a high coefficient of variation being a possible 
marker of bloom initiation and termination. Field sur-
veys of ice algal densities during the spring consistently 
find positively skewed distributions, with a high propor-
tion of cores having very little algae (Lange et al., 2016; 
Meiners et al., 2017). This is consistent with the skewness 
of P(t) observed in Figure 5. Those results suggest that if 
skewness values transition from being positive to around 
0 during what appears to be the bloom, this may indicate 
that the regional bloom has peaked and will soon begin 
to decline.

Historically, ice algae data have been obtained using 
small numbers of ice cores (Miller et al., 2015). More re-
cently, technological advances in remotely operated ve-
hicles and remote sensing are allowing for data collection 
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over larger areas (Cimoli et al., 2017; Forrest et al., 2019; 
Pinkerton & Hayward,  2021). Connecting these data 
meaningfully to sea ice biogeochemical models re-
mains challenging (Steiner et al., 2016; Vancoppenolle & 
Tedesco, 2017), but incorporating small- scale heteroge-
neity into these models, using the framework presented 
here, is a step in the right direction. To incorporate 
random parameters into these and other computation-
ally expensive models, we propose nonintrusive PC, as 
it offers a powerful combination of computational effi-
ciency, relative ease of implementation and computation 
of global sensitivities.

CONCLUSIONS

Ecological uncertainty can be represented in ecological 
models by treating parameters as random variables. We 
have provided a road map for analysing such models, 
including introducing tools from modern uncertainty 
quantification such as PC expansions. Using these meth-
ods in our case study provides a first step towards incor-
porating small scale heterogeneity in parameter values 
into regional models of ice algal blooms. Consideration 
of this heterogeneity results in changes in estimated 
bloom phenology and intensity, and should not be ne-
glected if we are to understand this important compo-
nent of polar ecology and biogeochemistry.
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